$\gamma = 78.69 \ (2)^{\circ}$

Z = 2

V = 928.0 (10) Å³

Mo $K\alpha$ radiation

 $0.2 \times 0.2 \times 0.18 \text{ mm}$

9074 measured reflections 4201 independent reflections

3241 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.43 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.045$

246 parameters

 $\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.40$ e Å⁻³

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[methanolcopper(II)potassium(I)]- μ_3 -1-(3-methoxy-2-oxidobenzylideneamino)-2-(2-oxidobenzamido)ethane]

Wang-Xi Luo, Ming-Ming Yu, Lei Zheng, Ai-Li Cui and Hui-Zhong Kou*

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: kouhz@mail.tsinghua.edu.cn

Received 1 June 2007; accepted 6 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.091; data-to-parameter ratio = 17.1.

In the title compound, $[CuK(C_{17}H_{15}N_2O_4)(CH_3OH)]_n$, the Cu^{II} ion has a square-planar coordination geometry and is coordinated by two N and two O atoms. One phenoxo and the amide O atom also interact with the methanol-coordinated K⁺ ion along with the methoxy O atom of the trianion. Two bridging interactions to K⁺ give rise to a linear chain structure. The chains are further linked by hydrogen bonds involving the amido methanol O atoms into a two-dimensional network structure.

Related literature

For other polynuclear complexes, see Kido et al. (2000, 2003); Osa et al. (2003). For related literature, see: Hamamatsu et al. (2007).

Experimental

Crystal data

[CuK(C₁₇H₁₅N₂O₄)(CH₄O)] $M_r = 445.99$ Triclinic, $P\overline{1}$ a = 8.851 (6) Å b = 9.139 (6) Å c = 12.458 (6) Å $\alpha = 72.19(2)^{\circ}$ $\beta = 77.68 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.732, T_{\max} = 0.759$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.091$ S = 1.024201 reflections

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.893 (2)	K1-O1	2.714 (2)
Cu1-N1	1.922 (3)	$K1 - O3^i$	2.726 (3)
Cu1-O2	1.937 (2)	K1-O4	2.736 (3)
Cu1-N2	1.940 (3)	K1-O5	2.740 (3)
K1-O2	2.701 (3)	$K1 - O1^{ii}$	2.886 (3)
O1-Cu1-N1	95.19 (10)	O2-K1-O5	162.88 (7)
O1-Cu1-O2	88.75 (9)	O1-K1-O5	130.64 (8)
N1-Cu1-O2	169.99 (10)	$O3^{i} - K1 - O5$	90.63 (9)
O1-Cu1-N2	173.78 (10)	O4-K1-O5	110.44 (8)
N1-Cu1-N2	85.22 (11)	$O2-K1-O1^{ii}$	90.43 (7)
O2-Cu1-N2	91.86 (10)	$O1-K1-O1^{ii}$	97.52 (7)
O2 - K1 - O1	59.32 (7)	$O3^i - K1 - O1^{ii}$	165.31 (7)
$O2-K1-O3^{i}$	104.21 (8)	O4-K1-O1 ⁱⁱ	81.53 (8)
$O1-K1-O3^{i}$	89.14 (8)	$O5-K1-O1^{ii}$	75.08 (8)
O2 - K1 - O4	57.36 (7)	Cu1-O1-K1 ⁱⁱ	100.64 (9)
O1-K1-O4	116.65 (7)	$K1 - O1 - K1^{ii}$	82.48 (7)
O3 ⁱ -K1-O4	107.21 (8)	Cu1-O2-K1	103.83 (9)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
O5-H5···O3 ⁱⁱⁱ	0.85	1.90	2.703 (4)	156		
Symmetry code: (iii) $x - 1, y + 1, z$.						

Data collection: CrystalStructure (Rigaku/MSC, 2004); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.

This work was supported by the Natural Science Foundation of China (grant No. 20671055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2273).

References

Hamamatsu, T., Yabe, K., Towatari, M., Osa, S., Matsumoto, N., Re, N., Pochaba, A., Mrozinski, J., Gallani, J.-L., Baria, A., Imperia, P., Paulsen, C. & Kappler, J.-P. (2007). *Inorg. Chem.* 46, 4458–4468.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Kido, T., Ikuta, Y., Sunatsuki, Y., Ogawa, Y., Matsumoto, N. & Re, N. (2003). *Inorg. Chem.* 42, 398–408.
- Kido, T., Nagasato, S., Sunatsuki, Y. & Matsumoto, N. (2000). Chem. Commun. pp. 2113–2114.
- Osa, S., Sunatsuki, Y., Yamamoto, Y., Nakamura, M., Shimamoto, T., Matsumoto, N. & Re, N. (2003). *Inorg. Chem.* **42**, 5507–5512.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m1853-m1854 [doi:10.1107/S1600536807027717]

$catena - Poly[[methanolcopper(II)potassium(I)] - \mu_3 - 1 - (3 - methoxy - 2 - oxidobenzylideneamino) - 2 - (2 - oxidobenzamido)ethane]$

W.-X. Luo, M.-M. Yu, L. Zheng, A.-L. Cui and H.-Z. Kou

Comment

1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane, abbreviated as H₃L, is an excellent bridging ligand that can link two metal atoms *via* the phenolato and the amido oxgen atoms to form polynuclear complexes (Kido *et al.*, 2000). A few cyclic heterometallic tetranuclear complexes have been synthesize and their structures have been characterized by diffraction analysis and magnetic studies (Hamamatsu *et al.*, 2007; Kido *et al.*, 2003; Osa *et al.*, 2003). The syntheses requires K[CuL] as the starting reactant. This compound crystallizes from methanol as the title compound.

The structure consists of $[CuL]^-$ and $[K(MeOH)]^+$ moieties connected by the phenolato and amido oxygen atoms (Fig. 1). The coordination geometry of potassium is an octahedron, and that of copper is a square plane. Two N atoms and two O atoms are linked to the copper atom. The coordination environment is similar to those found in other cyclic heterometallic tetranuclear complexes.

The phenolato oxygen and amido oxgen atoms are involving in bridging to form a ladder structure (Fig. 2). Adjacent ladders are further linked by hydrogen bonds (involving the amido group and the methanol molecule) ($O \cdots O 2.702$ (4) Å) to form a two-dimensional, hydrogen-bonded network.

Experimental

The compound was prepared according to the literature method (Kido *et al.*, 2003), and recrystallization from methanol afforded violet, block-shaped crystals.

Refinement

The H atoms bound to C atoms were placed in caculated positions with C—H = 0.93-0.77 Å and included in the refinement with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom attached to the methanol O atom were found from E-map, and was fixed with O—H = 0.85 Å and refined isotropically.

Figures

Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: i -x, 1 - y, -z; ii 1 - x, 1 - y, -z.

Fig. 2. The hydrogen-bonded layer structure.

catena-Poly[[methanolcopper(II)potassium(I)]-µ₃- 1-(3-methoxy-2-oxidobenzylideneamino)-2-(2oxidobenzamido)ethane]

[CuK(C ₁₇ H ₁₅ N ₂ O ₄)(CH ₄ O)]	<i>Z</i> = 2
$M_r = 445.99$	$F_{000} = 458$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.596 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 8.851 (6) Å	Cell parameters from 4201 reflections
b = 9.139 (6) Å	$\theta = 3.0-27.5^{\circ}$
c = 12.458 (6) Å	$\mu = 1.43 \text{ mm}^{-1}$
$\alpha = 72.19 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 77.68 \ (3)^{\circ}$	Block, violet
$\gamma = 78.69 \ (2)^{\circ}$	$0.2\times0.2\times0.18~mm$
$V = 928.0 (10) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	4201 independent reflections
Radiation source: fine-focus sealed tube	3241 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
Detector resolution: 0.1 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$

(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.732, \ T_{\max} = 0.759$	$l = -16 \rightarrow 14$
9074 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.01P)^2 + P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
4201 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
246 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.27702 (4)	0.27166 (4)	0.12226 (3)	0.03185 (11)
K1	0.03569 (8)	0.65451 (7)	0.05460 (6)	0.03864 (17)
01	0.2426 (2)	0.4267 (2)	-0.01471 (17)	0.0358 (5)
O2	0.0917 (2)	0.3708 (2)	0.20129 (17)	0.0358 (5)
N2	0.3005 (3)	0.0990 (3)	0.2574 (2)	0.0325 (5)
N1	0.4802 (3)	0.1843 (3)	0.0599 (2)	0.0344 (6)
C16	0.3546 (3)	0.4689 (3)	-0.1033 (2)	0.0311 (6)
C11	0.5110 (3)	0.3922 (3)	-0.1150 (3)	0.0324 (6)
O3	0.7203 (2)	0.2010 (3)	-0.0501 (2)	0.0442 (5)
C1	0.0455 (3)	0.3377 (3)	0.3110 (3)	0.0314 (6)
C2	-0.0732 (4)	0.4438 (3)	0.3569 (3)	0.0350 (7)
C7	0.2269 (4)	0.0894 (3)	0.3583 (3)	0.0359 (7)
H7A	0.2556	0.0012	0.4153	0.043*
C12	0.6138 (4)	0.4529 (4)	-0.2151 (3)	0.0414 (7)
H12A	0.7163	0.4038	-0.2241	0.050*

C8	0.4203 (4)	-0.0246 (3)	0.2303 (3)	0.0413 (7)
H8A	0.3758	-0.0905	0.2010	0.050*
H8B	0.4613	-0.0879	0.2987	0.050*
C10	0.5754 (3)	0.2510 (3)	-0.0307 (3)	0.0328 (6)
C6	0.1032 (3)	0.2026 (3)	0.3925 (3)	0.0336 (6)
C4	-0.0790 (5)	0.2770 (4)	0.5471 (3)	0.0513 (9)
H4A	-0.1221	0.2557	0.6243	0.062*
C15	0.3135 (4)	0.6004 (4)	-0.1913 (3)	0.0394 (7)
H15A	0.2120	0.6524	-0.1840	0.047*
C13	0.5699 (4)	0.5814 (4)	-0.3001 (3)	0.0477 (8)
H13A	0.6415	0.6179	-0.3650	0.057*
C9	0.5501 (4)	0.0481 (4)	0.1414 (3)	0.0411 (7)
H9A	0.6202	0.0791	0.1780	0.049*
H9B	0.6098	-0.0264	0.1017	0.049*
C5	0.0393 (4)	0.1755 (4)	0.5088 (3)	0.0438 (8)
H5A	0.0784	0.0865	0.5608	0.053*
C3	-0.1347 (4)	0.4125 (4)	0.4699 (3)	0.0489 (8)
H3A	-0.2148	0.4823	0.4958	0.059*
C14	0.4183 (4)	0.6552 (4)	-0.2879 (3)	0.0445 (8)
H14A	0.3868	0.7421	-0.3449	0.053*
C17	-0.2533 (4)	0.6761 (4)	0.3077 (3)	0.0544 (9)
H17A	-0.3396	0.6178	0.3350	0.082*
H17B	-0.2751	0.7612	0.2427	0.082*
H17C	-0.2377	0.7154	0.3672	0.082*
O4	-0.1159 (3)	0.5782 (2)	0.27564 (19)	0.0434 (5)
O5	-0.1113 (3)	0.9268 (3)	-0.06939 (19)	0.0465 (6)
C18	0.0008 (4)	0.9855 (4)	-0.1635 (3)	0.0485 (8)
H18C	-0.0447	1.0816	-0.2103	0.073*
H18D	0.0358	0.9119	-0.2076	0.073*
H18A	0.0880	1.0031	-0.1369	0.073*
Н5	-0.1666	0.9996	-0.0431	0.051 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02267 (18)	0.0323 (2)	0.0352 (2)	0.00534 (14)	-0.00369 (14)	-0.00796 (15)
K1	0.0325 (4)	0.0315 (3)	0.0475 (4)	0.0003 (3)	-0.0073 (3)	-0.0071 (3)
01	0.0230 (10)	0.0383 (11)	0.0373 (11)	0.0031 (9)	-0.0011 (8)	-0.0051 (9)
O2	0.0295 (11)	0.0350 (11)	0.0335 (11)	0.0051 (9)	0.0009 (9)	-0.0060 (9)
N2	0.0260 (13)	0.0281 (12)	0.0404 (14)	0.0042 (10)	-0.0064 (11)	-0.0094 (10)
N1	0.0241 (12)	0.0313 (13)	0.0436 (15)	0.0057 (10)	-0.0048 (11)	-0.0109 (11)
C16	0.0279 (15)	0.0329 (15)	0.0333 (15)	-0.0044 (12)	0.0013 (12)	-0.0145 (12)
C11	0.0268 (15)	0.0351 (15)	0.0390 (16)	-0.0021 (12)	-0.0017 (12)	-0.0196 (13)
O3	0.0213 (11)	0.0412 (13)	0.0683 (15)	0.0018 (9)	0.0018 (10)	-0.0223 (11)
C1	0.0239 (14)	0.0300 (14)	0.0384 (16)	-0.0044 (11)	-0.0005 (12)	-0.0094 (12)
C2	0.0331 (16)	0.0312 (15)	0.0394 (17)	-0.0031 (13)	-0.0032 (13)	-0.0105 (13)
C7	0.0370 (17)	0.0283 (15)	0.0382 (17)	-0.0015 (13)	-0.0096 (13)	-0.0029 (12)
C12	0.0313 (17)	0.0494 (19)	0.0463 (19)	-0.0108 (14)	0.0043 (14)	-0.0213 (15)

C8	0.0355 (17)	0.0314 (16)	0.053 (2)	0.0070 (13)	-0.0089 (15)	-0.0121 (14)
C10	0.0244 (14)	0.0320 (15)	0.0464 (18)	0.0024 (12)	-0.0046 (13)	-0.0218 (13)
C6	0.0314 (16)	0.0311 (15)	0.0365 (16)	-0.0056 (12)	-0.0026 (12)	-0.0082 (12)
C4	0.060 (2)	0.053 (2)	0.0355 (18)	-0.0069 (18)	0.0074 (16)	-0.0154 (16)
C15	0.0357 (17)	0.0386 (17)	0.0408 (17)	0.0005 (14)	-0.0030 (14)	-0.0121 (14)
C13	0.048 (2)	0.053 (2)	0.0407 (19)	-0.0169 (17)	0.0088 (15)	-0.0162 (16)
C9	0.0300 (16)	0.0368 (17)	0.052 (2)	0.0101 (13)	-0.0085 (14)	-0.0142 (15)
C5	0.050 (2)	0.0398 (18)	0.0374 (17)	-0.0071 (15)	-0.0047 (15)	-0.0060 (14)
C3	0.050 (2)	0.047 (2)	0.047 (2)	-0.0006 (16)	0.0064 (16)	-0.0215 (16)
C14	0.054 (2)	0.0429 (18)	0.0345 (17)	-0.0118 (16)	-0.0017 (15)	-0.0080 (14)
C17	0.041 (2)	0.047 (2)	0.069 (2)	0.0122 (16)	-0.0041 (18)	-0.0220 (18)
O4	0.0370 (13)	0.0357 (12)	0.0485 (13)	0.0106 (10)	-0.0024 (10)	-0.0113 (10)
O5	0.0439 (14)	0.0376 (13)	0.0495 (14)	0.0036 (11)	-0.0018 (11)	-0.0096 (11)
C18	0.0379 (19)	0.048 (2)	0.053 (2)	-0.0013 (16)	-0.0014 (16)	-0.0107 (16)

Geometric parameters (Å, °)

Cu1—O1	1.893 (2)	C7—H7A	0.9300
Cu1—N1	1.922 (3)	C12—C13	1.374 (5)
Cu1—O2	1.937 (2)	C12—H12A	0.9300
Cu1—N2	1.940 (3)	C8—C9	1.515 (5)
K1—O2	2.701 (3)	C8—H8A	0.9700
K1—O1	2.714 (2)	C8—H8B	0.9700
K1—O3 ⁱ	2.726 (3)	C6—C5	1.402 (4)
K1—O4	2.736 (3)	C4—C5	1.364 (5)
K1—O5	2.740 (3)	C4—C3	1.392 (5)
K1—O1 ⁱⁱ	2.886 (3)	C4—H4A	0.9300
O1—C16	1.331 (3)	C15—C14	1.377 (5)
O1—K1 ⁱⁱ	2.886 (3)	C15—H15A	0.9300
O2—C1	1.298 (4)	C13—C14	1.378 (5)
N2—C7	1.272 (4)	C13—H13A	0.9300
N2—C8	1.457 (4)	С9—Н9А	0.9700
N1—C10	1.315 (4)	С9—Н9В	0.9700
N1—C9	1.469 (4)	С5—Н5А	0.9300
C16—C15	1.403 (4)	С3—НЗА	0.9300
C16—C11	1.423 (4)	C14—H14A	0.9300
C11—C12	1.407 (4)	C17—O4	1.422 (4)
C11—C10	1.494 (4)	C17—H17A	0.9600
O3—C10	1.272 (3)	C17—H17B	0.9600
O3—K1 ⁱ	2.726 (3)	C17—H17C	0.9600
C1—C6	1.422 (4)	O5—C18	1.406 (4)
C1—C2	1.433 (4)	О5—Н5	0.8521
C2—C3	1.358 (5)	C18—H18C	0.9600
C2—O4	1.377 (4)	C18—H18D	0.9600
C7—C6	1.441 (4)	C18—H18A	0.9600
O1—Cu1—N1	95.19 (10)	N2—C8—C9	108.7 (3)
O1—Cu1—O2	88.75 (9)	N2—C8—H8A	110.0
N1—Cu1—O2	169.99 (10)	С9—С8—Н8А	110.0

01—Cu1—N2	173.78 (10)	N2—C8—H8B	110.0
N1—Cu1—N2	85.22 (11)	C9—C8—H8B	110.0
O2—Cu1—N2	91.86 (10)	H8A—C8—H8B	108.3
O2—K1—O1	59.32 (7)	O3—C10—N1	123.1 (3)
O2—K1—O3 ⁱ	104.21 (8)	O3—C10—C11	118.2 (3)
01—K1—O3 ⁱ	89.14 (8)	N1-C10-C11	118.7 (2)
O2—K1—O4	57.36 (7)	C5—C6—C1	120.4 (3)
O1—K1—O4	116.65 (7)	C5—C6—C7	118.2 (3)
O3 ⁱ —K1—O4	107.21 (8)	C1—C6—C7	121.4 (3)
O2—K1—O5	162.88 (7)	C5—C4—C3	119.4 (3)
01—K1—O5	130.64 (8)	C5—C4—H4A	120.3
O3 ⁱ —K1—O5	90.63 (9)	C3—C4—H4A	120.3
O4—K1—O5	110.44 (8)	C14—C15—C16	122.3 (3)
02—K1—01 ⁱⁱ	90.43 (7)	C14—C15—H15A	118.8
$01-K1-01^{ii}$	97.52 (7)	C16—C15—H15A	118.8
$O3^{i}$ K1 $O1^{ii}$	165.31 (7)	C12—C13—C14	119.0 (3)
$04-K1-01^{ii}$	81.53 (8)	C12—C13—H13A	120.5
$05-K1-01^{ii}$	75.08 (8)	C14—C13—H13A	120.5
C16	124 07 (18)	N1-C9-C8	108.6(2)
$C_{16} = 0_{1} = K_{1}$	117.80 (17)	N1-C9-H9A	110.0
Cu1-O1-K1	104 65 (9)	C8—C9—H9A	110.0
$C_{16} O_{1} K_{1}^{ii}$	118 66 (17)	N1—C9—H9B	110.0
	100.64 (0)		110.0
Cu1—O1—K1"	100.04 (9)	С8—С9—Н9В	110.0
K1—O1—K1 ⁿ	82.48 (7)	Н9А—С9—Н9В	108.4
C1—O2—Cu1	126.37 (18)	C4—C5—C6	121.4 (3)
C1—O2—K1	124.59 (17)	С4—С5—Н5А	119.3
Cu1—O2—K1	103.83 (9)	C6—C5—H5A	119.3
C7—N2—C8	122.0 (3)	C2—C3—C4	120.7 (3)
C/—N2—Cul	127.1 (2)	C2—C3—H3A	119.7
C8—N2—Cul	110.9 (2)	C4—C3—H3A	119.7
C10—N1—C9	116.5 (2)	C15-C14-C13	120.0 (3)
CIO-NI-Cul	12/.7(2)	C15—C14—H14A	120.0
C_{9} N_{1} C_{11} C_{15}	113.3(2)	C13-C14-H14A	120.0
01 - C16 - C13	110.7 (3)	04—C17—H17A	109.5
$C_{1} = C_{10} = C_{11}$	123.2(3)	$U_4 - C_1 / - H_1 / B$	109.5
C13 - C10 - C11	110.1(3) 117.5(3)	M/A = C1/-M/B	109.5
C_{12} C_{11} C_{10}	117.3(3)	H17A C17 H17C	109.5
C12 - C11 - C10	117.0 (3)	H17B_C17_H17C	109.5
$C_{10} = C_{10} = C_{10}$	127.29 (18)	C204C17	117.3 (3)
C10-03-K1	127.29(10)	$C_2 O_4 C_1$	117.3(3)
02 - 01 - 00	118 9 (3)	$C_2 - C_4 - K_1$	123.12(11) 118.8(2)
C6-C1-C2	115.7 (3)	$C_{1,1} = O_{1,1} = K_{1,1}$	105.91 (10)
C3—C2—O4	124 5 (3)	C18-O5-H5	110.9
C3—C2—C1	122.2 (3)	К1—О5—Н5	1263
04-02-01	113 2 (3)	O5-C18-H18C	109.5
·· ·· ·· ··			

N2—C7—C6	126.0 (3)	O5—C18—H18D	109.5
N2—C7—H7A	117.0	H18C—C18—H18D	109.5
С6—С7—Н7А	117.0	O5—C18—H18A	109.5
C13—C12—C11	123.1 (3)	H18C—C18—H18A	109.5
C13—C12—H12A	118.4	H18D—C18—H18A	109.5
C11—C12—H12A	118.4		
N1—Cu1—O1—C16	-15.7 (2)	K1—O2—C1—C6	-164.0 (2)
O2—Cu1—O1—C16	155.1 (2)	Cu1—O2—C1—C2	166.0 (2)
K1 ⁱⁱ —Cu1—O1—C16	-135.7 (2)	K1—O2—C1—C2	15.8 (4)
N1—Cu1—O1—K1	-155.04 (10)	O2—C1—C2—C3	175.7 (3)
O2—Cu1—O1—K1	15.73 (9)	C6—C1—C2—C3	-4.5 (4)
N1—Cu1—O1—K1 ⁱⁱ	120.04 (10)	O2—C1—C2—O4	-4.8 (4)
O2—Cu1—O1—K1 ⁱⁱ	-69.19 (9)	C6—C1—C2—O4	175.1 (3)
O2—K1—O1—C16	-155.5 (2)	C8—N2—C7—C6	-177.6 (3)
O3 ⁱ —K1—O1—C16	-48.4 (2)	Cu1—N2—C7—C6	3.8 (5)
O4—K1—O1—C16	-157.23 (18)	C16—C11—C12—C13	0.2 (5)
O5—K1—O1—C16	41.7 (2)	C10-C11-C12-C13	179.5 (3)
01 ⁱⁱ —K1—O1—C16	118.5 (2)	C7—N2—C8—C9	-142.6 (3)
O3 ⁱ —K1—O1—Cu1	94.05 (10)	Cu1—N2—C8—C9	36.3 (3)
O4—K1—O1—Cu1	-14.83 (12)	K1 ⁱ —O3—C10—N1	-114.3 (3)
O5—K1—O1—Cu1	-175.86 (8)	K1 ⁱ —O3—C10—C11	65.8 (3)
O1 ⁱⁱ —K1—O1—Cu1	-99.09 (10)	C9—N1—C10—O3	1.4 (4)
O2—K1—O1—K1 ⁱⁱ	86.02 (8)	Cu1—N1—C10—O3	162.2 (2)
O3 ⁱ —K1—O1—K1 ⁱⁱ	-166.86 (7)	C9—N1—C10—C11	-178.6 (2)
O4—K1—O1—K1 ⁱⁱ	84.26 (8)	Cu1—N1—C10—C11	-17.8 (4)
O5—K1—O1—K1 ⁱⁱ	-76.77 (10)	C12—C11—C10—O3	4.8 (4)
O1 ⁱⁱ —K1—O1—K1 ⁱⁱ	0.0	C16—C11—C10—O3	-176.0 (3)
Cu1 ⁱⁱ —K1—O1—K1 ⁱⁱ	-29.86 (5)	C12-C11-C10-N1	-175.2 (3)
O1—Cu1—O2—C1	-170.9 (2)	C16-C11-C10-N1	4.1 (4)
N1—Cu1—O2—C1	-57.5 (7)	O2—C1—C6—C5	-177.1 (3)
N2—Cu1—O2—C1	15.3 (2)	C2—C1—C6—C5	3.1 (4)
K1 ⁱⁱ —Cu1—O2—C1	141.3 (2)	O2—C1—C6—C7	2.2 (5)
O1—Cu1—O2—K1	-15.75 (9)	C2—C1—C6—C7	-177.6 (3)
N1—Cu1—O2—K1	97.6 (6)	N2—C7—C6—C5	-177.6 (3)
N2—Cu1—O2—K1	170.44 (9)	N2—C7—C6—C1	3.1 (5)
O1—K1—O2—C1	168.4 (2)	O1—C16—C15—C14	-179.5 (3)
$O3^{i}$ —K1—O2—C1	88.1 (2)	C11—C16—C15—C14	0.9 (5)
O4—K1—O2—C1	-13.4 (2)	C11—C12—C13—C14	0.0 (5)
O5—K1—O2—C1	-61.3 (3)	C10—N1—C9—C8	-172.4 (3)
O1 ⁱⁱ —K1—O2—C1	-93.1 (2)	Cu1—N1—C9—C8	24.0 (3)
K1 ⁱⁱ —K1—O2—C1	-135.3 (2)	N2-C8-C9-N1	-38.5 (3)
Cu1 ⁱⁱ —K1—O2—C1	-102.8 (2)	C3—C4—C5—C6	-1.8 (6)
O1—K1—O2—Cu1	12.72 (7)	C1—C6—C5—C4	-0.1 (5)
O3 ⁱ —K1—O2—Cu1	-67.59 (10)	C7—C6—C5—C4	-179.4 (3)

O4—K1—O2—Cu1	-169.14 (12)	O4—C2—C3—C4	-176.7 (3)
O5—K1—O2—Cu1	143.0 (2)	C1—C2—C3—C4	2.8 (5)
O1 ⁱⁱ —K1—O2—Cu1	111.21 (10)	C5—C4—C3—C2	0.5 (6)
N1—Cu1—N2—C7	159.9 (3)	C16-C15-C14-C13	-0.7 (5)
O2—Cu1—N2—C7	-10.5 (3)	C12-C13-C14-C15	0.3 (5)
O2—Cu1—N2—C8	170.7 (2)	C3—C2—O4—C17	-12.8 (5)
K1 ⁱⁱ —Cu1—N2—C8	99.6 (2)	C1—C2—O4—C17	167.7 (3)
O1—Cu1—N1—C10	21.4 (3)	C3—C2—O4—K1	171.7 (3)
O2—Cu1—N1—C10	-91.5 (6)	C1—C2—O4—K1	-7.8 (3)
N2-Cu1-N1-C10	-164.9 (3)	O2—K1—O4—C2	10.4 (2)
O1—Cu1—N1—C9	-177.3 (2)	O1—K1—O4—C2	12.2 (2)
O2—Cu1—N1—C9	69.8 (6)	O3 ⁱ —K1—O4—C2	-85.7 (2)
N2—Cu1—N1—C9	-3.5 (2)	O5—K1—O4—C2	177.0 (2)
Cu1—O1—C16—C15	-171.1 (2)	O1 ⁱⁱ —K1—O4—C2	106.4 (2)
K1—O1—C16—C15	-36.5 (3)	O2—K1—O4—C17	-165.0 (3)
K1 ⁱⁱ —O1—C16—C15	60.3 (3)	O1—K1—O4—C17	-163.2 (2)
Cu1—O1—C16—C11	8.5 (4)	O3 ⁱ —K1—O4—C17	98.9 (2)
K1—O1—C16—C11	143.1 (2)	O5—K1—O4—C17	1.6 (2)
K1 ⁱⁱ —O1—C16—C11	-120.0 (3)	O1 ⁱⁱ —K1—O4—C17	-69.0 (2)
O1-C16-C11-C12	179.8 (3)	O2—K1—O5—C18	-159.7 (2)
C15—C16—C11—C12	-0.6 (4)	O1—K1—O5—C18	-39.6 (2)
O1-C16-C11-C10	0.6 (4)	O3 ⁱ —K1—O5—C18	49.8 (2)
C15-C16-C11-C10	-179.8 (3)	O4—K1—O5—C18	158.47 (19)
Cu1—O2—C1—C6	-13.8 (4)	O1 ⁱⁱ —K1—O5—C18	-126.7 (2)
O	\ 1		

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O5—H5···O3 ⁱⁱⁱ	0.85	1.90	2.703 (4)	156
Symmetry codes: (iii) $x-1$, $y+1$, z .				

Fig. 1

Fig. 2

